If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-14x=16
We move all terms to the left:
3x^2-14x-(16)=0
a = 3; b = -14; c = -16;
Δ = b2-4ac
Δ = -142-4·3·(-16)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{97}}{2*3}=\frac{14-2\sqrt{97}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{97}}{2*3}=\frac{14+2\sqrt{97}}{6} $
| 15-x-5=-11 | | F(x)^-1=2x-19 | | 40x+4(1.5x)=529 | | 9^x-1)=27 | | 4f-10=14 | | 3x−5=−5 | | w2+9w+14=0 | | 6x2=x+15 | | -2+x=-9+6 | | X+28=x+x+2= | | z=24 z=–5 z=5 z=–24 | | y=2+10 | | 3(x+4)=2×+1 | | 4x(9)-4x(5)=128 | | X^2+4y^2+8y-3=0 | | 4u+13=53 | | (5x-7)-5(7x-12)+7=0 | | (9/6t-8)=2 | | a-12/16+42=26 | | 2x-x=+x=4 | | -13+25y=-8 | | 2x+5=3(x+1)−5 | | 3z-2z(1+3)=30 | | 14x-38=130 | | -12-w/4=12 | | 0=3z-6z= | | 54(3x+18)=90 | | 7x-20=3x+41 | | -×-4x-7=-2x+5 | | 9x+5-x-9=20+4x | | 143=(2x+10)(2x+8) | | 2y+3y=3 |